Energy and entropy decomposition using the electron density

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Ayers, Paul
dc.date.issued 2010-07-05
dc.identifier.citation Ayers, P. (2010). Energy and entropy decomposition using the electron density. A 'IX Girona Seminar'. Girona: Universitat. [Consulta 3 setembre 2010]. Disponible a: http://hdl.handle.net/10256.1/1693
dc.identifier.uri http://hdl.handle.net/10256.1/1693
dc.description.abstract Chemists often classify chemical interactions as being dominated by some sort of interaction; among the most popular and useful classifications are steric, polarization, charge-transfer, electron-pairing, and electrostatic interactions. In real molecular processes, of course, each of these effects contributes, although often one dominates. This talk will focus on how one may use density-functional theory (DFT) to define, quantify, and compute these interactions. The most straightforward approach is DFT-based energy decomposition analysis; this provides a full decomposition of the energy into steric, polarization, charge-transfer, electrostatic, and electron-pairing (covalent bond formation) contributions. One advantage of the DFT-based approach is that it is insensitive to basis set and it can be applied at any level of theory (beyond single Slater determinants). Another approach is based on partitioning the Kullback- Liebler entropy into charge-transfer (“mixing”) and polarization (“deformation”) terms. Both approaches can be combined with a Hirshfeld-style population analysis method. Unlike many other approaches, these methods appear to provide a clean (but obviously nonunique) separation between charge-transfer and polarization effects
dc.format.mimetype audio/mpeg
dc.format.mimetype video/H263
dc.language.iso eng
dc.publisher Universitat de Girona. Departament de Química
dc.publisher Universitat de Girona. Institut de Química Computacional
dc.relation.ispartofseries IX Girona Seminar
dc.rights Aquest document està subjecte a una llicència Creative Commons: Reconeixement - No comercial - Compartir igual (by-nc-sa)
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0/es/deed.ca
dc.subject Química quàntica -- Congressos
dc.subject Quantum chemistry -- Congresses
dc.title Energy and entropy decomposition using the electron density
dc.type info:eu-repo/semantics/lecture


Files in this item

The following license files are associated with this item:

Show simple item record

Related Items

Search DUGiMedia


Browse

My Account

Statistics

You can copy this text:

This file is restricted

The file you are attempting to access is a restricted file and requires credentials to view. Please login below to access the file.

  1. We will contact you via the email address you have provided us.