7763.mp4
7763.mp3
Combining Constraint Programming Reasoning with Large Language Model Predictions
dc.contributor.author
dc.date.issued
2024-09-03
dc.identifier.uri
dc.description.abstract
Constraint Programming (CP) and Machine Learning (ML) face challenges in text generation due to CP's struggle with implementing "meaning" and ML's difficulty with structural constraints. This paper proposes a solution by combining both approaches and embedding a Large Language Model (LLM) in CP. The LLM handles word generation and meaning, while CP manages structural constraints. This approach builds on On-the-fly Constraint Programming Search (OTFS), improving it using LLM-generated domains. Compared to Beam Search (BS), a standard NLP method, this combined approach (OTFS with LLM) is faster and produces better results, ensuring all constraints are satisfied. This fusion of CP and ML presents new possibilities for enhancing text generation under constraints
dc.description.tableofcontents
7763.mp4
7763.mp3
dc.format.mimetype
audio/mpeg
video/mp4
dc.language.iso
Anglès
dc.publisher
Universitat de Girona. Departament d'Informàtica, Matemàtica Aplicada i Estadística
dc.relation.ispartofseries
30th International Conference on Principles and Practice of Constraint Programming
dc.rights
Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri
dc.subject
dc.title
Combining Constraint Programming Reasoning with Large Language Model Predictions
dc.type
Conferència/Classe
dc.rights.accessrights
Accés obert