7776.mp4
7776.mp3
Constraint Acquisition - A Tutorial on Learning Constraint Models
dc.contributor.author
dc.date.issued
2024-09-03
dc.identifier.uri
dc.description.abstract
Dimos Tsouros presents a tutorial on Learning Constraint Models.
Constraint Programming (CP) is a powerful paradigm for solving complex combinatorial problems, but its adoption is often hindered by the expertise required for modeling. Constraint Acquisition (CA) aims to mitigate this bottleneck by semi-automating the modeling process. This tutorial will provide a comprehensive introduction to CA, covering both passive and interactive learning approaches. For passive acquisition, we will explore CA techniques for learning constraint models from datasets of existing solutions and non-solutions. We will discuss different approaches that focus on learning fixed-arity or global constraints, handling noise, and generalizing the learned models to handle varying problem instances. We will also review interactive CA techniques, highlighting the recent integration of statistical Machine Learning methods that enhance efficiency by reducing the number of queries needed. During the tutorial, state-of-the-art CA tools implemented in the open-source CPMpy modeling language will be demonstrated. Finally, we will discuss current challenges and future directions in constraint acquisition research
dc.description.tableofcontents
7776.mp4
7776.mp3
dc.format.mimetype
audio/mpeg
video/mp4
dc.language.iso
English
dc.publisher
Universitat de Girona. Departament d'Informàtica, Matemàtica Aplicada i Estadística
dc.relation.ispartofseries
30th International Conference on Principles and Practice of Constraint Programming
dc.rights
Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri
dc.subject
dc.title
Constraint Acquisition - A Tutorial on Learning Constraint Models
dc.type
Conference/Class
dc.rights.accessrights
Open Access